Тело примеры физика 7 класс: Что такое физические тела и что такое вещества — урок. Химия, 8 класс.

Некоторые физические термины | 7 класс Онлайн

Конспект по физике для 7 класса «Некоторые физические термины»: понятия, физическое тело, вещество и атомы, материя, объекты, приборы.

Когда человек появляется па свет, ом воспринимает окружающий мир через ощущения. Постепенно в его сознании формируются образы различных предметов, которые его окружаю!. Позднее человек связывает эти образы со словами, обозначающими эти предметы. И только потом он начинает узнавать и использовать различные понятия.

НАУЧНЫЕ ТЕРМИНЫ

Понятиями принято называть обобщения разных предметов и явлений по определённым признакам. Ромашка, колокольчик, роза — это цветы. Цветок — это понятие. У разных людей с одним и тем же понятием могут быть связаны разные образы. Например, машина — это и игрушка, и автомобиль, и стиральная машина, и т. д.

Особенностью языка науки является использование специальных слов, которые всеми понимаются одинаково. Их называют научными терминами. Термины — это слова или словосочетания, обозначающие определённые понятия какой-либо области науки, техники и искусства. Они необходимы для того, чтобы люди, использующие эти слова, точно понимали, что они обозначают. Например, понятие «сила* мы используем, говоря: сила воли, сила ветра и т. д. В физике используется термин «сила*, обозначающий физическую величину, с которой вам ещё предстоит познакомиться.

ФИЗИЧЕСКОЕ ТЕЛО

Одной из главных целей науки является нахождение общих закономерностей, описывающих окружающий нас мир. Зная их, можно не только объяснять многие явления, но и делать прогнозы.

В физике любой из окружающих нас объектов (карандаш, каплю воды, целую планету) принято называть физическим телом или просто телом. Каждое из них имеет собственную форму и объём, а также обладает набором своих индивидуальных свойств. Это может быть цвет, прозрачность, масса, электрический заряд. Мы знаем, что и подброшенный вверх камень, и подброшенный вверх мячик, и подброшенное вверх яблоко упадут в конце концов на землю. Использование термина «физическое тело» позволяет нам обобщить три этих явления и сформулировать общую закономерность: подброшенное вверх физическое тело упадёт на землю.

ВЕЩЕСТВО

Всё то, из чего состоят физические тела, называют веществом. Железо, стекло, пластилин, резина, воздух, вода — это различные виды вещества.

В течение жизни человек сталкивается с огромным числом разных веществ. Насколько их много в окружающем нас мире? Это число конечно или веществ бесконечное множество? Эти вопросы волновали человечество с самых древних времён.

ВЕЩЕСТВО И АТОМЫ

В V в. до н. э. древнегреческий философ Демокрит выдвинул гипотезу о строении вещества. Согласно легенде, он задался вопросом: что получится, если разрезать яблоко пополам, потом половинку разрезать ещё раз пополам и т. д.? Сможем ли мы резать яблоко до бесконечности, или существует предел его деления, которым является мельчайшая частица?

Философ пришёл к выводу, что должен существовать предел деления. Самую маленькую частицу вещества, которую нельзя разделить на части, Демокрит назвал атомом. Слово «атом» в переводе с греческого означает «неделимый».

Сегодня уже достоверно известно, что вещество в окружающем нас мире состоит из атомов. Атомов различных видов всего около 100, но они могут объединяться, образуя огромное множество разнообразных молекул, которые, в свою очередь, являются мельчайшими частицами вещества. Атомы современная наука уже не считает неделимыми, они сами состоят из более мелких составляющих — электронов и ядер, а ядра — из протонов и нейтронов.

МАТЕРИЯ

Всё то, что существует во Вселенной независимо от нашего сознания, называют материей. Материя является более общим понятием, чем вещество. Материальны, т. е. действительно существуют в природе, растения, животные, планеты, различные предметы. Вещество — это один из видов материи. Примерами материи также являются свет, радиоволны, которые передают сигнал от радиостанции к радиоприёмнику, излучение в микроволновой печи и т. д.

ФИЗИЧЕСКИЕ ОБЪЕКТЫ

ФИЗИЧЕСКИЕ ПРИБОРЫ


Вы смотрели конспект по физике для 7 класса «Некоторые физические термины»: понятия, физическое тело, вещество и атомы, материя, объекты, приборы. Вернуться к Списку конспектов по физике (оглавление).

Все формулы по физике за 7 класс с пояснениями — таблица и шпаргалки

Научим применять физические формулы для решения задач

Начать учиться

409.1K

Готовясь к экзаменам, удобно иметь под рукой шпаргалку, где будет кратко изложено самое важное. В этом материале мы объединили все основные формулы по физике за 7 класс с пояснениями и терминами. Их можно скачать на свой компьютер, чтобы всегда иметь под рукой.

Шпаргалки по физике за 7 класс

В рамках одной статьи сложно охватить весь курс по физике, но мы осветили основные темы за 7 класс и этого достаточно, чтобы освежить знания в памяти. Скачайте и распечатайте обе шпаргалки — одна из них (подробная) пригодится для вдумчивой подготовки к ОГЭ и ЕГЭ, а вторая (краткая) послужит для решения задач.

Скачать шпаргалку со всеми формулами и определениями по физике за 7 класс (мелко на одной странице).

Для тех, кто находится на домашнем обучении или вынужден самостоятельно изучать материал ввиду пропусков по болезни, рекомендуем также учебник по физике А. В. Перышкина с формулами за 7 класс и легкими, доступными пояснениями по всем темам. Он был написан несколько десятилетий назад, но до сих пор очень популярен и востребован.

Практикующий детский психолог Екатерина Мурашова

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Измерение физических величин

Измерением называют определение с помощью инструментов и технических средств числового значения физической величины.

Результат измерения сравнивают с неким эталоном, принятым за единицу. В итоге значением физической величины считается полученное число с указанием единиц измерения.

В курсе по физике за 7 класс изучают правила измерений с использованием приборов со шкалой. Если цена деления шкалы неизвестна, узнать ее можно с помощью следующей формулы:

ЦД = (max − min) / n, где ЦД — цена деления, max — максимальное значение шкалы, min — минимальное значение шкалы, n — количество делений между ними.

Вместо максимального и минимального можно взять любые другие значения шкалы, числовое выражение которых нам известно.

Выделяют прямое и косвенное измерение:

  • при прямом измерении результат можно увидеть непосредственно на шкале инструмента;

  • при косвенном измерении значение величины вычисляется через другую величину (например, среднюю скорость определяют на основе нескольких замеров скорости).

Для удобства и стандартизации измерений в 1963 году была принята Международная система единиц СИ. Она регламентирует, какие единицы измерения считать основными и использовать для формул. Обозначения этих единиц также учат в программе по физике за 7 класс.

Механическое движение: формулы за 7 класс

Механическое движение — перемещение тела в пространстве, в результате которого оно меняет свое положение относительно других тел. Закономерности такого движения изучают в рамках механики и конкретно ее раздела — кинематики.

Для того, чтобы описать движение, требуется тело отсчета, система координат, а также инструмент для измерения времени. Это составляющие системы отсчета.

Изучение механического движения в курсе по физике за 7 класс включает следующие термины:

  • Перемещение тела — минимальное расстояние, которое соединяет две выбранные точки траектории движения.

  • Траектория движения — мысленная линия, вдоль которой перемещается тело.

  • Путь — длина траектории тела от начальной до конечной точки.

  • Скорость — быстрота перемещения тела или отношение пройденного им пути ко времени прохождения.

  • Ускорение — быстрота изменения скорости, с которой движется тело.

Равномерное движение — механическое движение, при котором тело за любые равные промежутки времени проходит одно и то же расстояние.

Формула скорости равномерного прямолинейного движения:

V = S / t, где S — путь тела, t — время, за которое этот путь пройден.

Формула скорости равномерного криволинейного движения:

где S1 и S2 — отрезки пути, а t1 и t2 — время, за которое был пройден каждый из них.

Единица измерения скорости в СИ: метр в секунду (м/с).

Формула скорости равноускоренного движения:

V = V0 + at, где V0— начальная скорость, а — ускорение.

Единица измерения ускорения в СИ: м/с2.

Сила тяжести, вес, масса, плотность

Формулы, понятия и определения, описывающие эти физические характеристики, изучают в 7 классе в рамках такого раздела физики, как динамика.

Вес тела или вещества — это физическая величина, которая характеризует, с какой силой оно действует на горизонтальную поверхность или вертикальный подвес.

Обратите внимание: вес тела измеряется в ньютонах, масса тела — в граммах и килограммах.

Формула веса:

P = mg, где m — масса тела, g — ускорение свободного падения.

Ускорение свободного падения возникает под действием силы тяжести, которой подвержены все находящиеся на нашей планете тела.

g = 9,806 65 м/с2 или 9,8 Н/кг

Если тело находится в покое или в прямолинейном равномерном движении, его вес равен силе тяжести.

Fтяж = mg

Но эти понятия нельзя отождествлять: сила тяжести действует на тело ввиду наличия гравитации, в то время как вес — это сила, с которой само тело действует на поверхность.

Плотность тела или вещества – величина, указывающая на то, какую массу имеет данное вещество, занимая единицу объема. Плотность прямо пропорциональна массе и обратно пропорциональна объему.

Формула плотности:

ρ = m / V, где m — масса тела или вещества, V — занимаемый объем.

Единица измерения плотности в СИ: кг/м3

.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Механический рычаг, момент силы

О механическом рычаге говорил еще Архимед, когда обещал перевернуть Землю, если только найдется подходящая точка опоры. Это простой механизм, который помогает поднимать грузы, закрепленные на одном его конце, прилагая силу к другому концу. При этом вес груза намного превосходит прилагаемое усилие. В 7 классе физические формулы, описывающие этот процесс, изучаются в том же разделе динамики.

Рычаг — это некое твердое тело, способное вращаться вокруг неподвижной точки опоры, на один конец которого действует сила, а на другом находится груз.

Перпендикуляр, проведенный от точки опоры до линии действия силы, называется плечом силы.

Рычаг находится в равновесии, если произведение силы на плечо с одной его стороны равно произведению силы на плечо с другой стороны.

Уравнение равновесия рычага:

F1 × l1 = F2 × l2

Из этого следует, что рычаг уравновешен, когда модули приложенных к его концам сил обратно пропорциональны плечам этих сил.

Момент силы — это физическая величина, равная произведению модуля силы F на ее плечо l.

Формула момента силы:

M = F × l, где F — модуль силы, l — длина плеча.

Единица измерения момента силы в СИ: ньютон-метр (Н·м).

Эта формула верна, если сила приложена перпендикулярно оси рычага. Если же она прилагается под углом, такой случай выходит за рамки курса физики за 7 класс и подробно изучается в 9 классе.

Правило моментов: рычаг уравновешен, если сумма всех моментов сил, которые поворачивают его по часовой стрелке, равна сумме всех моментов сил, которые поворачивают его в обратном направлении.

Можно сказать иначе: рычаг в равновесии, если сумма моментов всех приложенных к нему сил относительно любой оси равна нулю.

М1 + М2 + Мn + … = 0

Давление, сила давления

Прилагая одну и ту же силу к предмету, можно получить разный результат в зависимости от того, на какую площадь эта сила распределена. Объясняют этот феномен в программе 7 класса физические термины «давление» и «сила давления».

Давление — это величина, равная отношению силы, действующей на поверхность, к площади этой поверхности.

Сила давления направлена перпендикулярно поверхности.

Формула давления:

p = F / S, где F — модуль силы, S — площадь поверхности.

Единица измерения давления в СИ: паскаль (Па).

1 Па = 1 Н/м2

Понятно, что при одной и той же силе воздействия более высокое давление испытает та поверхность, площадь которой меньше.

Формулу для расчета силы давления вывести несложно:

F = p × S

В задачах по физике за 7 класс сила давления, как правило, равна весу тела.

Давление газов и жидкостей

Жидкости и газы, заполняющие сосуд, давят во всех направлениях: на стенки и дно сосуда. Это давление зависит от высоты столба данного вещества и от его плотности.

Формула гидростатического давления:

р = ρ × g × h, где ρ — плотность вещества, g — ускорение свободного падения, h — высота столба.

g = 9,8 м/с2

Единица измерения давления жидкости или газа в СИ: паскаль (Па).

Однородная жидкость или газ давит на стенки сосуда равномерно, поскольку это давление создают хаотично движущиеся молекулы. И внешнее давление, оказываемое на вещество, тоже равномерно распределяется по всему его объему.

Закон Паскаля: давление, производимое на поверхность жидкого или газообразного вещества, одинаково передается в любую его точку независимо от направления.

Внешнее давление, оказываемое на жидкость или газ, рассчитывается по формуле:

p = F / S, где F — модуль силы, S — площадь поверхности.

Сообщающиеся сосуды

Сообщающимися называются сосуды, которые имеют общее дно либо соединены трубкой. Уровень однородной жидкости в таких сосудах всегда одинаков, независимо от их формы и сечения.

Если ρ1 = ρ2, то h1 = h2 и ρ1gh1 = ρ2gh2, где:

p — плотность жидкости,

h — высота столба жидкости,

g = 9,8 м/с2.

Если жидкость в сообщающихся сосудах неоднородна, т. е. имеет разную плотность, высота столба в сосуде с более плотной жидкостью будет пропорционально меньше.

Высоты столбов жидкостей с разной плотностью обратно пропорциональны плотностям.

Гидравлический пресс — это механизм, созданный на основе сообщающихся сосудов разных сечений, заполненных однородной жидкостью. Такое устройство позволяет получить выигрыш в силе для оказания статического давления на детали (сжатия, зажимания и т. д.).

Если под поршнем 1 образуется давление p1 = f1/s1, а под поршнем 2 будет давление p2 = f2/s2, то, согласно закону Паскаля, p1 = p2

Следовательно,

Силы, действующие на поршни гидравлического пресса F1 и F2, прямо пропорциональны площадям этих поршней S1 и S2.

Другими словами, сила поршня 1 больше силы поршня 2 во столько раз, во сколько его площадь больше площади поршня 2. Это позволяет уравновесить в гидравлической машине с помощью малой силы многократно бóльшую силу.

Закон Архимеда

На тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу объема жидкости или газа, вытесненного частью тела, погруженной в жидкость или газ.

Формула архимедовой силы:

Fa = ρ × g × V, где ρ — плотность жидкости, V — объем погруженной части тела, g — ускорение 9,8 м/с2.

Закон Архимеда помогает рассчитать, как поведет себя тело при погружении в среды разной плотности. Верны следующие утверждения:

  • если плотность тела выше плотности среды, оно уйдет на дно;

  • если плотность тела ниже, оно всплывет на поверхность.

Другими словами, тело поднимется на поверхность, если архимедова сила больше силы тяжести.

Работа, энергия, мощность

Механическая работа — это физическая величина, которая равна произведению перемещения тела на модуль силы, под действием которой было выполнено перемещение.

Формула работы в курсе физики за 7 класс:

A = F × S, где F — действующая сила, S — пройденный телом путь.

Единица измерения работы в СИ: джоуль (Дж).

Такое понятие, как мощность, описывает скорость выполнения механической работы. Оно говорит о том, какая работа была совершена в единицу времени.

Мощность — это физическая величина, равная отношению работы к временному промежутку, потребовавшемуся для ее выполнения.

Формула мощности:

N = A / t, где A — работа, t — время ее совершения.

Также мощность можно вычислить, зная силу, воздействующую на тело, и среднюю скорость перемещения этого тела.

N = F × v, где F — сила, v — средняя скорость тела.

Единица измерения мощности в СИ: ватт (Вт).

Тело может совершить какую-либо работу, если оно обладает энергией — кинетической и/или потенциальной.

  • Кинетической называют энергию движения тела. Она говорит о том, какую работу нужно совершить, чтобы придать телу определенную скорость.

  • Потенциальной называется энергия взаимодействия тела с другими телами или взаимодействия между частями одного целого. Потенциальная энергия тела, поднятого над Землей, характеризует, какую работу должна совершить сила тяжести, чтобы опустить это тело снова на нулевой уровень.

Таблица с формулами по физике за 7 класс для вычисления кинетической и потенциальной энергии:

Кинетическая энергия

Пропорциональна массе тела и квадрату его скорости.

Ek = mv2/2

Потенциальная энергия

Равна произведению массы тела, поднятого над Землей, на ускорение свободного падения и высоту поднимания.

Ep= mgh

Полная механическая энергия

Складывается из кинетической и потенциальной энергии.

E = Ek+Ep

Сохранение и превращение энергии

Если механическая энергия не переходит в другие формы, то сумма потенциальной энергии и кинетической представляет собой константу.

Ek+ Ep= const

Для того, чтобы понять, какая часть совершенной работы была полезной, вычисляют коэффициент полезного действия или КПД. С его помощью определяется эффективность различных механизмов, инструментов и т. д.

Коэффициент полезного действия (КПД) отражает полезную часть выполненной работы. Также его можно выразить через отношение полезно использованной энергии к общему количеству полученной энергии.

Формула для расчета КПД:

где Ап— полезная работа, Аз— затраченная работа.

КПД выражается в процентах и составляет всегда меньше 100%, поскольку часть энергии затрачивается на трение, повышение температуры воздуха и окружающих тел, преодоление силы тяжести и т. д.

Удачи на экзаменах!

Яна Кононенко

К предыдущей статье

Закон Джоуля-Ленца

К следующей статье

Диффузия

Получите индивидуальный план обучения физике на бесплатном вводном уроке

Премиум

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению

  2. Определим уровень и подберём курс

  3. Расскажем, как 
    проходят занятия

Рисование диаграмм свободного тела

Диаграммы свободного тела — это диаграммы, используемые для отображения относительной величины и направления всех сил, действующих на объект в данной ситуации. Диаграмма свободного тела — это особый пример векторных диаграмм, которые обсуждались в предыдущем разделе. Эти диаграммы будут использоваться на протяжении всего нашего изучения физики. Размер стрелки на диаграмме свободного тела отражает величину силы. Направление стрелки показывает направление действия силы. Каждая стрелка силы на диаграмме помечена, чтобы указать точный тип силы. Обычно на диаграмме свободного тела объект изображают в виде прямоугольника, а стрелку силы проводят из центра прямоугольника наружу в направлении действия силы. Пример диаграммы свободного тела показан справа

На приведенной выше диаграмме свободного тела показаны четыре силы, действующие на объект. На объекты , а не всегда действуют четыре силы. Будут случаи, когда количество сил, изображенных на диаграмме свободного тела, будет равно одному, двум или трем. Не существует жесткого правила о количестве сил, которые должны быть изображены на диаграмме свободного тела. Единственное правило для рисования диаграмм свободного тела состоит в том, чтобы изобразить все силы, которые существуют для этого объекта в данной ситуации. Таким образом, для построения диаграмм свободного тела чрезвычайно важно знать различные виды сил. Если вам дано описание физической ситуации, начните с использования вашего понимания типов сил, чтобы определить, какие силы присутствуют. Затем определите направление, в котором действует каждая сила. Наконец, нарисуйте прямоугольник и добавьте стрелки для каждой существующей силы в соответствующем направлении; пометьте каждую стрелку силы в соответствии с ее типом. При необходимости обратитесь к списку сил и их описанию, чтобы понять различные типы сил и их соответствующие символы.



Мы хотели бы предложить …

Иногда недостаточно просто прочитать об этом. Вы должны взаимодействовать с ним! И это именно то, что вы делаете, когда используете один из интерактивов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашей интерактивной диаграммы свободного тела. Вы можете найти его в разделе Physics Interactives на нашем сайте. Интерактивная диаграмма свободного тела позволяет учащемуся практиковаться в определении сил, действующих на объект, и выражать такое понимание путем построения диаграммы свободного тела.


Посетите: Диаграмма Free-Body


 

Практика

Примените метод, описанный в абзаце выше, для построения диаграмм свободного тела для различных ситуаций, описанных ниже. Ответы показаны и объяснены внизу этой страницы.

 

  1. Книга лежит на столе. Изобразите силы, действующие на книгу. Смотрите ответ.
  2. Гимнастка, держащаяся за перекладину, неподвижно висит в воздухе. Перекладина поддерживается двумя веревками, которые крепятся к потолку. Изобразите силы, действующие на комбинацию гимнастки и штанги. Смотрите ответ.
  3. Яйцо свободно падает из гнезда на дереве. Сопротивлением воздуха пренебречь. Изобразите силы, действующие на яйцо при его падении. Смотрите ответ.
  4. Белка-летяга скользит (без крыла закрылков ) с дерева на землю с постоянной скоростью. Учитывайте сопротивление воздуха. Изобразите силы, действующие на белку. Смотрите ответ.
  5. К книге приложена сила, направленная вправо, чтобы переместить ее по столу с ускорением вправо. Рассмотрим силы трения. Сопротивлением воздуха пренебречь. Изобразите силы, действующие на книгу. Смотрите ответ.
  6. К книге приложена сила, направленная вправо, чтобы переместить ее по столу с постоянной скоростью. Рассмотрим силы трения. Сопротивлением воздуха пренебречь. Изобразите силы, действующие на книгу. Смотрите ответ.
  7. Студент колледжа кладет рюкзак на плечо. Рюкзак подвешен неподвижно на одной лямке с одного плеча. Изобразите вертикальные силы, действующие на рюкзак. Смотрите ответ.
  8. Парашютист спускается с постоянной скоростью. Учитывайте сопротивление воздуха. Изобразите силы, действующие на парашютиста. Смотрите ответ.
  9. Сила приложена вправо, чтобы тащить сани по рыхлому снегу с ускорением вправо. Сопротивлением воздуха пренебречь. Изобразите силы, действующие на сани. Смотрите ответ.
  10. Футбольный мяч движется вверх к своей вершине после того, как игрок забил бутс. Сопротивлением воздуха пренебречь. Изобразите силы, действующие на футбольный мяч, когда он поднимается вверх к своей вершине. Смотрите ответ.
  11. Автомобиль движется вправо и замедляется. Сопротивлением воздуха пренебречь. Изобразите силы, действующие на автомобиль. Смотрите ответ.

 

 

Ответы

Здесь показаны ответы на приведенное выше упражнение. Если у вас есть трудности с рисованием диаграмм свободного тела, вы должны быть обеспокоены. Продолжайте просматривать список сил и их описание, а также эту страницу, чтобы получить удобство при построении диаграмм свободного тела.

 

1. На столе лежит книга. Диаграмма свободного тела для этой ситуации выглядит так:

Вернуться к вопросам

Вернуться к информации о диаграммах свободного тела

Вернуться к онлайн-списку описаний

 

2. Гимнастка, держась за перекладину, неподвижно висит в воздухе. Перекладина поддерживается двумя веревками, которые крепятся к потолку. Изобразите силы, действующие на комбинацию гимнастки и штанги. Диаграмма свободного тела для этой ситуации выглядит так:

Вернуться к вопросам

Вернуться к информации о диаграммах свободного тела

Вернуться к списку описаний 9 в режиме онлайн0003

 

3. Яйцо свободно падает из гнезда на дереве. Сопротивлением воздуха пренебречь. Диаграмма свободного тела для этой ситуации выглядит следующим образом:

 

Вернуться к вопросам

Вернуться к информации о диаграммах свободного тела

Вернуться к онлайн-списку описаний

 

4. Белка-летяга скользит (без крыльев закрылков ) с дерева на землю с постоянной скоростью. Учитывайте сопротивление воздуха. Диаграмма свободного тела для этой ситуации выглядит так:

Вернуться к вопросам

Вернуться к информации о диаграммах свободного тела

Вернуться к онлайн-списку описаний

 

5. К книге приложена сила, направленная вправо, чтобы переместить ее по столу с ускорением вправо. Рассмотрим силы трения. Сопротивлением воздуха пренебречь. Диаграмма свободного тела для этой ситуации выглядит так:

Вернуться к вопросам

Вернуться к информации о диаграммах свободного тела

Вернуться к онлайн-списку описаний

 

6. К книге приложена направленная вправо сила, чтобы переместить ее по столу с постоянной скоростью. Рассмотрим силы трения. Сопротивлением воздуха пренебречь. Диаграмма свободного тела для этой ситуации выглядит следующим образом:

 

Вернуться к вопросам

Вернуться к информации о диаграммах свободного тела

Вернуться к онлайн-списку описаний

 

7. Студент колледжа кладет на плечо рюкзак. Рюкзак подвешен неподвижно на одной лямке с одного плеча. Диаграмма свободного тела для этой ситуации выглядит следующим образом:

 

Вернуться к вопросам

Вернуться к информации о диаграммах свободного тела

Вернуться к онлайн-списку описаний

 

8. Парашютист спускается с постоянной скоростью. Учитывайте сопротивление воздуха. Диаграмма свободного тела для этой ситуации выглядит так:

 

Вернуться к вопросам

Вернуться к информации о диаграммах свободного тела

Вернуться к онлайн-списку описаний

 

9. Справа приложена сила, чтобы тащить сани по рыхлому снегу с ускорением вправо. Сопротивлением воздуха пренебречь. Диаграмма свободного тела для этой ситуации выглядит следующим образом:

 

Вернуться к вопросам

Вернуться к информации о диаграммах свободного тела

Вернуться к онлайн-списку описаний

 

10. Мяч движется вверх к своей вершине после того, как игрок забил бутс. Сопротивлением воздуха пренебречь. Диаграмма свободного тела для этой ситуации выглядит так:

Вернуться к вопросам

Вернуться к информации о диаграммах свободного тела

Вернуться к онлайн-списку описаний

 

11. Автомобиль катится вправо и замедляется. Сопротивлением воздуха пренебречь. Диаграмма свободного тела для этой ситуации выглядит так:

 

Вернуться к вопросам

Вернуться к информации о диаграммах свободного тела

Вернуться к онлайн-списку описаний

 

Следующий раздел:

Перейти к следующему уроку:

Физика | Определение, типы, темы, важность и факты

Модель давления газа Бернулли

Смотреть все СМИ

Ключевые люди:
Кип Торн Артур Эшкин Джеймс Пиблз Жерар Муру Донна Стрикленд
Похожие темы:
механика оптика квантовая механика сила тяжести космология

Просмотреть весь связанный контент →

Популярные вопросы

Что такое физика?

Физика — это область науки, изучающая структуру материи и то, как взаимодействуют фундаментальные составляющие Вселенной. Он изучает объекты, начиная от очень маленьких, используя квантовую механику, и заканчивая всей вселенной, используя общую теорию относительности.

Почему физика работает в единицах СИ?

Физики и другие ученые используют в своей работе Международную систему единиц (СИ), потому что они хотят использовать систему, принятую учеными всего мира. С 2019 годаединицы СИ были определены в терминах фундаментальных физических констант, а это означает, что ученые, где бы они ни использовали СИ, могут согласовать единицы, которые они используют для измерения физических явлений.

физика , наука, изучающая структуру материи и взаимодействия между фундаментальными составляющими наблюдаемой вселенной. В самом широком смысле физика (от греческого physikos ) занимается всеми аспектами природы как на макроскопическом, так и на субмикроскопическом уровнях. Область его изучения охватывает не только поведение объектов под действием заданных сил, но и природу и происхождение гравитационных, электромагнитных и ядерных силовых полей. Его конечной целью является формулировка нескольких всеобъемлющих принципов, которые объединяют и объясняют все такие разрозненные явления.

(Читайте эссе Эйнштейна «Британника» 1926 года о пространстве-времени.)

Физика — фундаментальная физическая наука. До сравнительно недавнего времени физика и натурфилософия взаимозаменяемо обозначали науку, целью которой является открытие и формулировка фундаментальных законов природы. По мере того как современные науки развивались и становились все более специализированными, физика стала обозначать ту часть физической науки, которая не включалась в астрономию, химию, геологию и инженерию. Физика, однако, играет важную роль во всех естественных науках, и во всех таких областях есть разделы, в которых физические законы и измерения получают особое внимание, носящие такие названия, как астрофизика, геофизика, биофизика и даже психофизика. Физику можно, по сути, определить как науку о материи, движении и энергии. Его законы обычно выражаются экономно и точно на языке математики.

Как эксперимент, наблюдение за явлениями в максимально точно контролируемых условиях, так и теория, формулирование единой концептуальной основы, играют существенную и взаимодополняющую роль в развитии физики. Физические эксперименты приводят к измерениям, которые сравниваются с результатом, предсказанным теорией. Говорят, что теория, которая надежно предсказывает результаты экспериментов, к которым она применима, воплощает закон физики. Однако закон всегда может быть изменен, заменен или ограничен более ограниченной областью, если более поздний эксперимент сделает это необходимым.

Викторина “Британника”

Как много вы знаете о физике?

Конечная цель физики — найти единый набор законов, управляющих материей, движением и энергией на малых (микроскопических) субатомных расстояниях, в человеческом (макроскопическом) масштабе повседневной жизни и на самых больших расстояниях (например, во внегалактическом масштабе). Эта амбициозная цель была достигнута в значительной степени. Хотя полностью единая теория физических явлений еще не создана (и, возможно, никогда не будет), кажется, что удивительно небольшой набор фундаментальных физических законов может объяснить все известные явления. Совокупность физики, разработанная примерно к началу 20-го века и известная как классическая физика, может в значительной степени объяснить движения макроскопических объектов, которые движутся медленно относительно скорости света, а также такие явления, как тепло, звук, электричество, магнетизм и свет. Современные разработки теории относительности и квантовой механики видоизменяют эти законы в той мере, в какой они применимы к более высоким скоростям, очень массивным объектам и к крошечным элементарным составляющим материи, таким как электроны, протоны и нейтроны.

Сфера применения физики

Традиционно организованные разделы или области классической и современной физики описаны ниже.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подписаться сейчас

Под механикой обычно понимают изучение движения объектов (или отсутствия их движения) под действием заданных сил. Классическую механику иногда считают разделом прикладной математики. Он состоит из кинематики, описания движения и динамики, изучения действия сил при создании либо движения, либо статического равновесия (последнее составляет науку о статике). Предметы 20-го века квантовой механики, имеющие решающее значение для изучения структуры материи, субатомных частиц, сверхтекучести, сверхпроводимости, нейтронных звезд и других важных явлений, и релятивистской механики, важной, когда скорости приближаются к скорости света, являются формами механики, которые будут будут обсуждаться далее в этом разделе.

В классической механике законы изначально формулируются для точечных частиц, в которых не учитываются размеры, форма и другие внутренние свойства тел. Таким образом, в первом приближении даже такие большие объекты, как Земля и Солнце, рассматриваются как точечные, например, при расчете планетарного орбитального движения. В динамике твердого тела также учитываются протяженность тел и распределение их масс, но предполагается, что они не способны деформироваться. Механика деформируемых твердых тел — это упругость; гидростатика и гидродинамика рассматривают, соответственно, жидкости в состоянии покоя и в движении.

Три закона движения, сформулированные Исааком Ньютоном, составляют основу классической механики вместе с признанием того, что силы являются направленными величинами (векторами) и соответственно комбинируются. Первый закон, также называемый законом инерции, гласит, что, если на него не действует внешняя сила, покоящийся объект остается в покое или, если он движется, он продолжает двигаться по прямой линии с постоянной скоростью. Следовательно, равномерное движение не требует причины. Соответственно, механика сосредотачивается не на движении как таковом, а на изменении состояния движения объекта, которое является результатом действующей на него результирующей силы. Второй закон Ньютона приравнивает результирующую силу, действующую на объект, к скорости изменения его количества движения, которое является произведением массы тела на его скорость. Третий закон Ньютона, закон действия и противодействия, гласит, что при взаимодействии двух частиц силы, действующие друг на друга, равны по величине и противоположны по направлению. В совокупности эти законы механики в принципе позволяют определить будущие движения множества частиц, если известно их состояние движения в какой-то момент, а также силы, действующие между ними и на них извне. Из этого детерминированного характера законов классической механики в прошлом делались глубокие (и, вероятно, неверные) философские выводы, которые даже применялись к человеческой истории.

Лежащие на самом базовом уровне физики, законы механики характеризуются определенными свойствами симметрии, примером которых является вышеупомянутая симметрия между силами действия и противодействия. Другие симметрии, такие как инвариантность (т. е. неизменная форма) законов при отражениях и вращениях, совершаемых в пространстве, обращение времени или переход в другую часть пространства или в другую эпоху времени, присутствуют как в классических механике и в релятивистской механике, а с некоторыми ограничениями и в квантовой механике.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *