Физические тела физические явления: Примеры физических явлений и их описание

Содержание

Примеры физических явлений и их описание

С давних времен люди собирали сведения о том мире, в котором они живут. Была лишь одна наука, объединяющая всю информацию о природе, которую человечество накопило на тот момент. Тогда еще люди не знали, что они наблюдают примеры физических явлений. В настоящее время такая наука носит название «естествознание».

Что изучает физическая наука

Со временем научные представления об окружающем мире заметно изменились – их стало гораздо больше. Естествознание раскололось на много отдельных наук, среди которых: биология, химия, астрономия, география и другие. В ряде этих наук не последнее место занимает физика. Открытия и достижения в этой области позволили человечеству обладать новыми знаниями. К ним можно отнести структуру и поведение различных объектов всяких размеров (начиная с гигантских звезд и заканчивая мельчайшими частицами – атомами и молекулами).

Физическое тело – это…

Существует специальный термин «материя», которым в кругах ученых называют все, что есть вокруг нас. Состоящее из материи физическое тело – это какое-либо вещество, занимающее определенное место в пространстве. Любое физическое тело в действии можно назвать примером физического явления. Опираясь на это определение, можно сказать, что любой предмет является физическим телом. Примеры физических тел: кнопка, блокнот, люстра, карниз, Луна, мальчик, облака.

Что такое физическое явление

Любая материя находится в постоянном изменении. Одни тела двигаются, другие соприкасаются с третьими, четвертые крутятся. Не зря много лет назад философом Гераклитом была произнесена фраза «Все течет, все меняется». У ученых есть даже специальный термин таким изменениям – это все явления.

К физическим явлениям относится все то, что движется.

Какие существуют типы физических явлений

Это явления, когда из-за воздействия температуры некоторые тела начинают трансформироваться (изменяется форма, размер и состояние). Пример физических явлений: под воздействием теплого весеннего солнца тают сосульки и превращаются в жидкость, с наступлением холодов лужи замерзают, кипящая вода становится паром.

  • Механические.

Эти явления характеризуют смену положения одного тела по отношению к остальным. Примеры: часы идут, мяч прыгает, дерево качается, ручка пишет, вода течет. Все они находятся в движении.

  • Электрические.

Характер этих явлений полностью оправдывает свое название. Слово «электричество» уходит корнями в греческий язык, где «электрон» значит «янтарь». Пример достаточно простой и многим наверняка знакомый. При резком снятии с себя шерстяного свитера слышится небольшой треск. Если проделать это, отключив в комнате свет, то можно увидеть искорки.

Тело, участвующее в явлении, которое связанно со светом, называют светящимся. В качестве примера физических явлений можно привести всем известную звезду нашей Солнечной системы – Солнце, а также любую другую звезду, лампу и даже жучка-светлячка.

Распространение звука, поведение звуковых волн при столкновениях с препятствием, а также иные явления, которые так или иначе связаны со звуком, относятся к этому типу физических явлений.

Они происходят благодаря свету. Так, например, человек и животные способны видеть, потому что есть свет. В эту группу также включены явления распространения и преломления света, его отражение от предметов и прохождение сквозь разные среды.

Теперь вы знаете, какие бывают физические явления. Однако стоит понимать, что между природными и физическими явлениями существует определенная разница. Так, при природном явлении происходит одновременно несколько физических явлений. Например, при ударе молнии в землю происходят следующие явления: магнитное, звуковое, электрическое, тепловое и световое.

Явления природы. Примеры объяснимых и необъяснимых явлений

Мир окружающей нас природы просто кишит разными тайнами и загадками. Учёные столетиями ищут ответы и пытаются объяснить порой необъяснимые факты, но даже самым лучшим умам человечества до сих пор не поддаются некоторые удивительные явления природы.

Порой складывается впечатление, что непонятные вспышки в небе, спонтанно двигающиеся камни не подразумевают под собой ничего особенного. Но, вникая в загадочные проявления, наблюдаемые на нашей планете, понимаешь, что дать ответ на многие вопросы невозможно. Природа тщательно скрывает свои секреты, а люди выдвигают все новые гипотезы, пытаясь разгадать их.

Сегодня мы рассмотрим физические явления в живой природе, которые заставят вас по-новому взглянуть на окружающий мир.

Физические явления

Каждое тело состоит из определенных веществ, но обратите внимание на то, что различные действия влияют по-разному на одни и те же тела. К примеру, при разрыве бумаги пополам бумага останется бумагой. А вот если её поджечь, то от неё останется пепел.

Когда меняется размер, форма, состояние, но вещество остается прежним и не трансформируется в другое, такие явления называют физическими. Они могут быть разными.

Явления природы, примеры которых мы можем наблюдать в обычной жизни, бывают:

  • Механические. Движение облаков по небу, полёт самолета, падение яблока.
  • Тепловые. Вызванные переменой температур. В ходе этого меняются характеристики тела. Если нагреть лёд, то он станет водой, которая трансформируется в пар.
  • Электрические. Наверняка при быстром снятии с себя шерстяной одежды вы хоть раз слышали специфический треск, схожий на электрический разряд. А если будете всё это делать в темной комнате, то ещё сможете понаблюдать искры. Предметы, которые после трения начинают притягивать более легкие тела, называются наэлектризованными. Северное сияние, молния во время грозы – яркие примеры электрического явления.
  • Световые. Тела, излучающие свет, называют световыми явлениями. Сюда можно отнести Солнце, лампы и даже представителей животного мира: некоторые виды глубинных рыб и светлячки.

Физические явления природы, примеры которых мы рассмотрели выше, успешно используются людьми в повседневной жизни. Но есть и такие, которые по сей день будоражат умы ученых и вызывают всеобщее восхищение.

Северное сияние

Пожалуй, это природное явление по праву носит статус самого романтического. Высоко в небе образуются разноцветные реки, которые покрывают нескончаемое количество ярких звёзд.

Если хотите насладиться этой красотой, то лучше всего делать это в северной части Финляндии (Лапландия). Существовало поверье, что причина возникновения Северного сияния – гнев верховных богов. Но большей популярностью пользовалась легенда народа саама о сказочном лисе, который ударял своим хвостом по заснеженным равнинам, из-за чего цветные искры взмывались в высь и озаряли ночное небо.

Облака в форме труб

Такое явление природы может любого человека надолго затянуть в состояние релакса, вдохновения, иллюзий. Такие ощущения создаются за счет формы больших труб, меняющих свой оттенок.

Увидеть его можно в тех местах, где начинает образовываться грозовой фронт. Это явление природы чаще всего наблюдается в странах с тропическим климатом.

Камни, которые двигаются в Долине Смерти

Встречаются различные явления природы, примеры которых вполне объяснимы с научной точки зрения. Но есть такие, которые не поддаются человеческой логике. Одной из загадок природы считаются движущиеся камни. Это явление можно наблюдать в американском национальном парке, именуемом Долиной Смерти. Многие ученые пытаются объяснить передвижение сильными ветрами, которые часто встречаются в пустынной местности, и наличием льда, так как именно зимой движение камней становилось интенсивней.

Во время исследований ученые произвели наблюдения за 30 камнями, вес которых составлял не более 25 кг. За семь лет 28 каменных глыб из 30 переместились на 200 метров от начальной точки.

Какими бы ни были догадки ученых, однозначного ответа относительно этого явления у них нет.

Шаровые молнии

Огненный шар, появляющийся после грозы или во время неё, называется шаровой молнией. Есть предположение, что Николе Тесле удалось создать в условиях своей лаборатории шаровую молнию. Он так и написал о том, что не видел ничего подобного в природе (речь шла об огненных шарах), но он разобрался, как они формируются, и даже сумел воссоздать это явление.

Ученые современности не смогли достичь подобных результатов. А некоторые даже ставят под сомнение существование этого явления как такового.

Мы рассмотрели только некоторые явления природы, примеры которых показывают, как удивителен и загадочен наш окружающий мир. Сколько еще неизведанного и интересного нам предстоит узнать в процессе развития и совершенствования науки. Как много открытий нас ждет впереди?

Физика – это наука о неживой природе. Физические тела и физические явления.

Физика – это наука о неживой природе. Живую природу, то есть растения и животных, изучает биология.

А что именно в неживой природе изучает физика? Физика изучает явления, которые происходят в неживой природе. Давайте более точно сформулируем, что такое явление. Явление – это любое изменение. Вот несколько примеров явлений неживой природы:

  • Падение камня под действием силы тяжести.
  • Звук от удара упавшего камня.
  • Радуга в небе.
  • Вращение Луны вокруг Земли.

А где эти явления происходят? В природе. А что такое природа? Это то, что вокруг нас. Нас окружает Вселенная. Природа – это весь материальный мир Вселенной.

Физика изучает явления неживой Вселенной. Всё что составляет Вселенную мы называем материей.

Существует 2 вида материи:

  1. Вещество – это всё, что можно ощутить органами чувств. Вещество бывает в трёх состояниях: твёрдом, жидком и газообразном. Например, если растопить твёрдый лёд, то он станет жидкостью – водой. Если нагреть воду, то она превратится в пар.
  2. Второй вид материи – поля. Физическое поле было открыто в 19 веке. Пример поля – это магнитное поле.

Физические тела

Для изучения физики важно знать что такое физическое тело. Область пространства заполненная веществом – физическое тело. То есть физическое тело имеет свои границы. Из одного и того же вещества могут состоять разные тела. Вещество и тело – это разные понятия. Например, из вещества мела могут состоять множество физических тел – кусочков мела.

Физические явления

Есть явление в неживой природе, а есть физическое явление – это разные вещи. Рассмотрим пример явления природы – молнию. Во время молнии происходит много всего разного: видим вспышку, слышим гром, в молнии высокая температура, во время разряда молнии могут выйти из строя электрические приборы. Т.е. у такого явления природы как молния множество различных проявлений. Физики сложное явление природы разложили на составные части, и эти составные части называются физическими явлениями. Вспышка – световое явление. Гром – звуковое явление. Температура – тепловое явление. Выход электроники из строя – электрические и магнитные явления. Движение тучи по небу – это механическое явление.

Для каждой категории физических явлений существуют физические законы, которые изучают разные разделы физики.

  • Световые явление изучает оптика.
  • Звуковые явления изучает акустика.
  • Тепловые явления изучает термодинамика.
  • Электромагнитные явления изучает электродинамика.
  • Механические явления изучает механика.

Когда физики проникли в глубь материи появились следующие разделы физики:

  • Атомная физика
  • Ядерная физика
  • Физика элементарных частиц.

Физические явления очень разнообразны и задача физики разложив их по полочкам объяснить каждое из этих явлений.

Примеры физических явлений:

Примеры физических явлений
Физические явленияПримеры
МеханическиеПолёт ракеты, бег собаки, вращение планет вокруг Солнца
ЗвуковыеПение птиц, гром, разговор, звон колокольчика
ТепловыеГорение пламени, замерзание воды, таяние льда
ЭлектромагнитныеПритяжение магнитов, разряд молнии, элетризация волос
СветовыеЗатмения (солнечные и лунные), радуга, свечение лампочки

Следующий урок: Научные методы изучения природы.

Примеры химических и физических явлений в природе :: SYL.ru

Динамические изменения встроены в саму природу. Все меняется так или иначе каждый момент. Если вы внимательно осмотритесь, вы найдете сотни примеров физических и химических явлений, которые являются вполне себе естественными преобразованиями.

Изменения – единственная константа во Вселенной

Как ни странно, изменение является единственной константой в нашей Вселенной. Чтобы понять физические и химические явления (примеры в природе встречаются на каждом шагу), принято классифицировать их по типам, в зависимости от характера конечного результата, вызванного ими. Различают физические, химические и смешанные изменения, которые содержат в себе и первые, и вторые.

Что такое физическое явление? Любые изменения, происходящие в веществе без изменения его химического состава, являются физическими. Они характеризуется изменениями физических атрибутов и материального состояния (твердое, жидкое или газообразное), плотности, температуры, объема, которые происходят без изменения его фундаментальной химической структуры. Не происходит создание новых химических продуктов или изменения общей массы. Кроме того, этот тип изменений обычно является временным и в некоторых случаях полностью обратимым.

Когда вы смешиваете химикаты в лаборатории, можно легко увидеть реакцию, но в мире вокруг вас происходит множество химических реакций каждый день. Химическая реакция изменяет молекулы, в то время как физическое изменение только перестраивает их. Например, если мы возьмем газ хлора и металлический натрий и объединим их, мы получим столовую соль. Полученное вещество сильно отличается от любого из его составных частей. Это химическая реакция. Если затем растворить эту соль в воде, мы просто смешиваем молекулы соли с молекулами воды. В этих частицах нет изменений, это физическое преобразование.

Примеры физических изменений

Все состоит из атомов. При соединении атомов образуются разные молекулы. Различные свойства, которые наследуют объекты, являются следствием различных молекулярных или атомных структур. Основные свойства объекта зависят от их молекулярного расположения. Физические изменения происходят без изменения молекулярной или атомной структуры объектов. Они просто преобразуют состояние объекта, не изменяя его природы. Плавление, конденсация, изменение объема и испарения являются примерами физических явлений.

Дополнительные примеры физических изменений: металл, расширяющийся при нагревании, передача звука через воздух, замерзание воды зимой в лед, медь втягивается в провода, формирование глины на разных объектах, мороженое плавится до жидкости, нагревание металла и преобразование его в другую форму, сублимация йода при нагревании, падение любого объекта под действием силы тяжести, чернила поглощаются мелом, намагничивание железных гвоздей, снеговик, тающий на солнце, светящиеся лампы накаливания, магнитная левитация объекта.

Как различать физические и химические изменения?

Множество примеров химических явлений и физических можно встретить в жизни. Часто трудно определить разницу между ними, особенно когда оба могут происходить одновременно. Чтобы определить физические изменения, задайте следующие вопросы:

  • Является ли состояние состояния объекта изменением (газообразным, твердым и жидким)?
  • Является ли изменение чисто ограниченным физическим параметром или характеристикой, такой как плотность, форма, температура или объем?
  • Является ли химическая природа объекта изменением?
  • Возникают ли химические реакции, приводящие к созданию новых продуктов?

Если ответ на один из первых двух вопросов да, и ответы на последующие вопросы отсутствуют, это, скорее всего, это физическое явление. И наоборот, если ответ на любой из двух последних вопросов положительный, в то время как первые два отрицательные, это, безусловно, химическое явление. Трюк состоит в том, чтобы просто четко наблюдать и анализировать то, что вы видите.

Примеры химических реакций в повседневной жизни

Химия происходит в окружающем вас мире, а не только в лаборатории. Материя взаимодействует для образования новых продуктов посредством процесса, называемого химической реакцией или химическим изменением. Каждый раз, когда вы готовите или убираете, это химия в действии. Ваше тело живет и растет благодаря химическим реакциям. Есть реакции, когда вы принимаете лекарства, зажигаете спичку и вздыхаете. Вот 10 химических реакций в повседневной жизни. Это всего лишь небольшая выборка из тех примеров физических и химических явлений в жизни, которые вы видите и испытываете много раз каждый день:

  1. Фотосинтез. Хлорофилл в листьях растений превращает углекислый газ и воду в глюкозу и кислород. Это одна из самых распространенных ежедневных химических реакций, а также одна из самых важных, поскольку именно так растения производят пищу для себя и животных и превращают углекислый газ в кислород.
  2. Аэробное клеточное дыхание является реакцией с кислородом в человеческих клетках. Аэробное клеточное дыхание является противоположным процессом фотосинтеза. Разница заключается в том, что молекулы энергии объединяются с кислородом, которым мы дышим, чтобы высвободить энергию, необходимую нашим клеткам, а также углекислый газ и воду. Энергия, используемая клетками, представляет собой химическую энергию в виде АТФ.
  3. Анаэробное дыхание. Анаэробное дыхание производит вино и другие ферментированные продукты. Ваши мышечные клетки выполняют анаэробное дыхание, когда вы исчерпываете подаваемый кислород, например, при интенсивном или продолжительном упражнении. Анаэробное дыхание дрожжами и бактериями используется для ферментации для производства этанола, углекислого газа и других химических веществ, которые производят сыр, вино, пиво, йогурт, хлеб и многие другие распространенные продукты.
  4. Сгорание – это тип химической реакции. Это химическая реакция в повседневной жизни. Каждый раз, когда вы зажигаете спичку или свечу, разжигаете костер, вы видите реакцию горения. Сжигание объединяет энергетические молекулы с кислородом для получения двуокиси углерода и воды.
  5. Ржавчина – общая химическая реакция. Со временем железо развивает красное, шелушащееся покрытие, называемое ржавчиной. Это пример реакции окисления. Другие повседневные примеры включают формирование вердигров на меди и потускнение серебра.
  6. Смешивание химических веществ вызывает химические реакции. Пекарский порошок и пищевая сода выполняют аналогичные функции при выпечке, но они по-разному реагируют на другие ингредиенты, поэтому вы не всегда можете заменить их на другой. Если вы комбинируете уксус и пищевую соду для химического “вулкана” или молока с порошком для выпечки в рецепте, вы испытываете реакцию двойного смещения или метатезиса (плюс некоторые другие). Ингредиенты рекомбинируют для получения газообразного диоксида углерода и воды. Углекислый газ образует пузырьки и помогает “выращиванию” хлебобулочных изделий. Эти реакции кажутся простыми на практике, но часто состоят из нескольких этапов.
  7. Батареи являются примерами электрохимии. Батареи используют электрохимические или окислительно-восстановительные реакции для превращения химической энергии в электрическую.
  8. Пищеварение. Тысячи химических реакций происходят во время пищеварения. Как только вы положите пищу в рот, фермент в вашей слюне, называемый амилазой, начинает разрушать сахара и другие углеводы в более простые формы, которые ваше тело может поглощать. Соляная кислота в вашем желудке реагирует с пищей, чтобы ее разрушить, а ферменты расщепляют белки и жиры, чтобы они могли всасываться в кровь через стенки кишечника.
  9. Кислотно-базовые реакции. Всякий раз, когда вы смешиваете кислоту (например, уксус, лимонный сок, серную кислоту , соляную кислоту ) со щелочью (например, пищевой содой, мылом, аммиаком, ацетоном), вы выполняете кислотно-щелочную реакцию. Эти процессы нейтрализуют друг друга, получая соль и воду. Хлорид натрия не является единственной солью, которая может быть образована. Например, здесь приведено химическое уравнение для реакции кислотно-щелочной реакции, в которой образуется хлорид калия, обычный заменитель столовой соли: HCl + KOH → KCl + H2O.
  10. Мыло и моющие средства. Их очищают путем химических реакций. Мыло эмульгирует грязь, что означает, что масляные пятна связываются с мылом, чтобы их можно было снять водой. Моющие средства снижают поверхностное натяжение воды, поэтому они могут взаимодействовать с маслами, изолировать их и смывать.
  11. Химические реакции при приготовлении пищи. Кулинария – один большой практический эксперимент по химии. Приготовление использует тепло, чтобы вызвать химические изменения в пище. Например, когда вы сильно кипятите яйцо, сероводород, полученный нагреванием яичного белка, может реагировать с железом из яичного желтка, образуя серо-зеленое кольцо вокруг желтка. Когда вы готовите мясо или выпечку, реакция Майяра между аминокислотами и сахарами дает коричневый цвет и желательный вкус.

Другие примеры химических и физических явлений

Физические свойства описывают характеристики, которые не изменяют вещество. Например, вы можете изменить цвет бумаги, но это еще бумага. Вы можете кипятить воду, но когда вы собираете и конденсируете пар, это все еще вода. Вы можете определить массу листа бумаги, и это все еще бумага.

Химическими свойствами являются те, которые показывают, как вещество реагирует или не реагирует с другими веществами. Когда металлический натрий помещают в воду, он реагирует бурно, образуя гидроксид натрия и водород. Достаточное тепло выделяется тем, что водород вырывается в пламя, реагируя с кислородом в воздухе. С другой стороны, когда вы кладете кусок медного металла в воду, реакция не возникает. Таким образом, химическое свойство натрия заключается в том, что он реагирует с водой, а химическое свойство меди заключается в том, что это не так.

Какие еще можно привести примеры химических явлений и физических? Химические реакции всегда происходят между электронами в валентных оболочках атомов элементов в периодической таблице. Физические явления на низких энергетических уровнях просто включают механические взаимодействия – случайные столкновения атомов без химических реакций, таких как атомы или молекулы газа. Когда энергии столкновений очень велики, целостность ядра атомов нарушается, что приводит к делению или слиянию вовлеченных видов. Спонтанный радиоактивный распад обычно считается физическим явлением.

Физика — Википедия

Фи́зика (от др.-греч. φύσις — природа) — область естествознания: наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении. Законы физики лежат в основе всего естествознания[1][2].

Термин «физика» впервые фигурирует в сочинениях одного из величайших мыслителей древности — Аристотеля (IV век до нашей эры). Первоначально термины «физика» и «философия» были синонимами, так как в основе обеих дисциплин лежало стремление объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика развилась в самостоятельную научную отрасль.

В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов и позже мобильных телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров. Развитие фотоники способно дать возможность создать принципиально новые — фотонные — компьютеры и другую фотонную технику, которые сменят существующую электронную технику. Развитие газодинамики привело к появлению самолётов и вертолётов.

Знания физики процессов, происходящих в природе, постоянно расширяются и углубляются. Большинство новых открытий вскоре получают технико-экономическое применение (в частности в промышленности). Однако перед исследователями постоянно встают новые загадки, — обнаруживаются явления, для объяснения и понимания которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

Общенаучные основы физических методов разрабатываются в теории познания и методологии науки.

В русский язык слово «физика» было введено М. В. Ломоносовым, издавшим первый в России учебник физики — свой перевод с немецкого языка учебника «Вольфианская экспериментальная физика» Х. Вольфа (1746)[3]. Первым оригинальным учебником физики на русском языке стал курс «Краткое начертание физики» (1810), написанный П. И. Страховым.

Предмет физики

Физика — это наука о природе (естествознание) в самом общем смысле (часть природоведения). Предмет её изучения составляет материя (в виде вещества и полей) и наиболее общие формы её движения, а также фундаментальные взаимодействия природы, управляющие движением материи.

Некоторые закономерности являются общими для всех материальных систем (например сохранение энергии), — их называют физическими законами. Физику иногда называют «фундаментальной наукой», поскольку другие естественные науки, — биология, геология, химия и др. — описывают только некоторый класс материальных систем, подчиняющихся законам физики. Например, химия изучает атомы, состоящие из них вещества и превращения одного вещества в другое. Химические же свойства вещества однозначно определяются физическими свойствами атомов и молекул, описываемыми в таких разделах физики, как термодинамика, электромагнетизм и квантовая физика.

Физика тесно связана с математикой: математика предоставляет аппарат, с помощью которого физические законы могут быть точно сформулированы. Физические теории почти всегда формулируются в виде математических уравнений, причём используются более сложные разделы математики, чем обычно в других науках. И наоборот, развитие многих областей математики стимулировалось потребностями физической науки.

Научный метод

Физика — естественная наука. Источником знаний для неё является практическая деятельность: наблюдения, экспериментальное исследование явлений природы, производственная деятельность. Правильность физических знаний проверяется экспериментом, использованием научных знаний в производственной деятельности. Обобщением результатов научных наблюдений и эксперимента являются физические законы, которыми объясняются эти наблюдения и эксперименты[4]. Физика сосредоточена на изучении фундаментальных и простейших явлений и на ответах на простые вопросы: из чего состоит материя, каким образом частицы материи взаимодействуют между собой, по каким правилам и законам осуществляется движение частиц и т. д.

В основе физических исследований лежит установление фактов путём наблюдения и эксперимента. Анализ данных совокупности экспериментов позволяет выявить и сформулировать закономерность. На первых этапах исследований закономерности носят преимущественно эмпирический, феноменологический характер, — то есть явление описывается количественно с помощью определённых параметров, характерных для исследуемых тел и веществ. Полученные факты подвергаются упрощению, идеализации путём введения идеальных объектов. На основе идеализации создаются модели исследуемых объектов и явлений. Физические объекты, модели и идеальные объекты описываются на языке физических величин. Затем устанавливаются связи между явлениями природы и выражаются в форме физических законов[5]. Физические законы проверяются с помощью продуманного эксперимента, в котором явление (феномен) проявлялось бы в как можно более чистом виде и не осложнялось бы другими явлениями (феноменами). Анализируя закономерности и параметры, физики строят физические

теории, которые позволяют объяснить изучаемые явления на основе представлений о строении тел и веществ и взаимодействие между их составными частями. Физические теории, в свою очередь, создают предпосылки для постановки точных экспериментов, в ходе которых в основном определяются рамки их применимости. Общие физические теории позволяют формулировать физические законы, которые считаются общими истинами, пока накопления новых экспериментальных результатов не потребует их уточнения или пересмотра.

Так, например, Стивен Грей заметил, что электричество можно передавать на довольно значительное расстояние с помощью увлажнённых нитей и начал исследовать это явление. Георг Ом сумел выявить для него количественную закономерность, — ток в проводнике прямо пропорционален напряжению и обратно пропорционален сопротивлению проводника току. Эта закономерность известна как закон Ома. При этом, конечно, эксперименты Ома опирались на новые источники питания и на новые способы измерять действие электрического тока, что позволило количественно охарактеризовать его. Результаты дальнейших исследований позволили абстрагироваться от формы и длины проводников тока и ввести такие феноменологические характеристики, как удельное сопротивление проводника и внутреннее сопротивление источника питания. Закон Ома и поныне основа электротехники, однако исследования также выявили и рамки его применимости, — открыты элементы электрической цепи с нелинейными вольт-амперными характеристиками, а также вещества, в определённых ситуациях не имеющие никакого электрического сопротивления — сверхпроводники. После открытия заряженных микрочастиц — электронов (позже протонов и других), была сформулирована микроскопическая теория электропроводности, объясняющая зависимости сопротивления от температуры посредством рассеяния электронов на колебаниях кристаллической решетки, примесях и т. д.

Вместе с тем было бы неправильным считать, что только эмпирический подход определяет развитие физики. Многие важные открытия были совершены «на кончике пера», или экспериментальной проверкой теоретических гипотез. Например, принцип наименьшего действия Пьер Луи де Мопертюи сформулировал в 1744 году на основе общих соображений, и справедливость его невозможно установить экспериментальным путём в силу всеобщности принципа. В настоящее время классическая и квантовая механика, теория поля основаны на принципе наименьшего действия. В 1899 году Макс Планк ввёл понятия кванта электромагнитного поля, кванта действия, что также не было следствием наблюдений и экспериментов, а чисто теоретической гипотезой. В 1905 году Альберт Эйнштейн опубликовал работу по специальной теории относительности, построенную дедуктивным путём из самых общих физических и геометрических соображений. Анри Пуанкаре — математик, прекрасно разбиравшийся в научных методах физики, — писал, что ни феноменологический, ни умозрительный подход по отдельности не описывают и не могут описывать физическую науку

[6].

Количественный характер физики

Физика — количественная наука. Физический эксперимент опирается на измерения, то есть сравнение характеристик исследуемых явлений с определёнными эталонами. С этой целью физика развила совокупность физических единиц и измерительных приборов. Отдельные физические единицы объединяются в системы физических единиц. Так, на современном этапе развития науки стандартом является Международная система единиц (СИ), но большинство теоретиков по-прежнему предпочитает пользоваться Гауссовой системой единиц (СГС).

Полученные экспериментально количественные зависимости позволяют использовать для своей обработки математические методы и строить теоретические, то есть математические модели изучаемых явлений.

С изменением представлений о природе тех или иных явлений меняются также физические единицы, в которых измеряются физические величины. Так, например, для измерения температуры сначала были предложены произвольные температурные шкалы, которые делили промежуток температур между характерными явлениями (например, замерзанием и кипением воды) на определённое количество меньших промежутков, которые получили название градусов температуры. Для измерения количества теплоты была введена единица — калория, которая определяла количество теплоты, необходимой для нагрева грамма воды на один градус. Однако со временем физики установили соответствие между механической и тепловой формой энергии. Таким образом, оказалось, что предложенная ранее единица количества теплоты, калория, является излишней, как и единица измерения температуры. И количество теплоты, и температуру можно измерять в единицах механической энергии. В современную эпоху калория и градус не вышли из практического употребления, но между этими величинами и единицей энергии Джоулем существует точное числовое соотношение. Градус, как единица измерения температуры входит в систему СИ, а коэффициент перехода от температурной к энергетическим величинам — постоянная Больцмана — считается физической постоянной.

История физики

Физика — это наука о материи, её свойствах и движении. Она является одной из наиболее древних научных дисциплин[7].

Люди пытались понять свойства материи из древнейших времен: почему тела падают на землю, почему разные вещества имеют различные свойства и т. д. Интересовали людей также вопрос о строении мира, о природе Солнца и Луны. Сначала ответы на эти вопросы пытались искать в философии. В основном философские теории, которые пытались дать ответы на такие вопросы, не проверялись на практике. Однако, несмотря на то, что нередко философские теории неправильно описывали наблюдения, ещё в древние времена человечество добилось значительных успехов в астрономии, а великий греческий учёный Архимед даже сумел дать точные количественные формулировки многих законов механики и гидростатики.

Некоторые теории древних мыслителей, как, например, идеи об атомах, которые были сформулированы в древних Греции и Индии, опережали время. Постепенно от общей философии начало отделяться естествознание, важнейшей составной частью которого стала физика. Уже Аристотель использовал название «Физика» в заголовке одного из основных своих трактат

Молния как физическое явление

Механизм образования молнии

Для формирования молнии необходимо возникновение и разделение положительных и отрицательных зарядов в грозовом облаке. При движении воздуха за счет конвекции различные воздушные потоки и облака в результате соприкосновения электризуются. Положительно заряженные капли воды и льдинки поднимаются, заряжая верхнюю часть грозового облака, а отрицательно заряженные оказываются внизу того же облака. Между двумя облаками, а также между облаками и землей возникает мощное электрическое поле. Рассмотрим последний случай.

Молния между облаком и землей

Молния — это электрический разряд в атмосфере, сопровождающийся вспышкой света и последующим громом. Светящийся канал разряда напоминает разветвляющуюся реку или дерево. Ее возникновению предшествует образование проводящего канала для разряда молнии в виде ломаной линии, так называемого ступенчатого лидера. Длина каждой такой «ступеньки» — около 50 м. На таком отрезке электроны под действием сильного электрического поля между тучей и землей разгоняются до скоростей порядка 50 000 км/с! Ионизировав огромное количество атомов, первичные электроны теряют энергию и тормозятся. Зато вновь образовавшиеся электроны быстро разгоняются до столь же высоких скоростей, и возникает следующее звено лидера. И так продолжается до тех пор, пока он не достигнет земли.

Облако и земля оказываются соединенными проводящим каналом, содержащим громадное количество носителей заряда. Иными словами, это проводник электрического тока. Теперь электроны нижней части тучи могут свободно сигануть вниз, на землю. Происходит как бы короткое замыкание между тучей и поверхностью земли — мощный электрический разряд, то есть бьет молния. Когда весь отрицательный заряд этой части тучи сбегает по такому каналу вниз, молния исчезает. Вспышка длится десятые доли секунды. Но бывают случаи, когда после первой молнии по тому же каналу бежит новый лидер — происходят второй разряд и вспышка молнии. Интервалы между последовательными импульсами очень коротки, от 1/100 до 1/10 с. Число таких повторных вспышек может доходить до 40.

Молния между облаками

Готовим молнию

Мы и сами можем смоделировать молнию, пусть и миниатюрную. Опыт следует проводить в темном помещении, иначе ничего не будет видно. Нам потребуется два продолговатых воздушных шарика. Надуем их и завяжем. Затем, следя, чтобы шарики не соприкасались, одновременно натрем их шерстяной тряпочкой. Воздух, наполняющий их, наэлектризуется. Если шарики сблизить, оставив между ними минимальный зазор, то от одного к другому через тонкий слой воздуха начнут проскакивать искры, создавая световые вспышки. Одновременно мы услышим слабое потрескивание — миниатюрную копию грома при грозе.

Мы проводники!

Человеческое тело является хорошим проводником. Его мускулы и кровеносные сосуды в значительной степени состоят из воды, а нервы способны переносить электрические сигналы. Интересно, что 86% жертв молний — мужчины. То ли у них физиология особенная, то ли они бывают на свежем воздухе чаще женщин, проводящих большую часть жизни дома.

Человек имеет значительные шансы выжить при ударе молнии в него. Конечно, температура во время разряда очень высока, но длится он обычно недолго и не всегда приводит к серьезным ожогам. Основной ток молнии часто проходит по поверхности тела, поэтому большинство пораженных молнией людей не умирают.

Интересные факты о молниях

  • Средняя длина молнии — 2,5 км. Некоторые разряды простираются в атмосфере на расстояние до 20 км.
  • Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране. Молнии Сатурна в 1 млн раз сильнее земных.
  • Воздух в зоне канала молнии практически мгновенно разогревается до температуры 25 000—30 000°С.
  • От удара молнии в мире в среднем погибает около 3000 человек ежегодно.
  • Из деревьев молнией чаще всего поражаются тополя (27%), груши (20%), липы (12%), ели (8%), а кедровые составляют только 0,5%.

Поделиться ссылкой

Physical Experiment Study Physical Phenomenon Expansion стоковый вектор (Роялти-фри) 1123977458

В настоящее время вы используете старый браузер, и ваш опыт может быть не оптимальным. Пожалуйста, подумайте об обновлении. Учить больше. ImagesImages homeCurated collectionsPhotosVectorsOffset ImagesCategoriesAbstractAnimals / WildlifeThe ArtsBackgrounds / TexturesBeauty / FashionBuildings / LandmarksBusiness / FinanceCelebritiesEditorialEducationFood и DrinkHealthcare / MedicalHolidaysIllustrations / Clip-ArtIndustrialInteriorsMiscellaneousNatureObjectsParks / OutdoorPeopleReligionScienceSigns / SymbolsSports / RecreationTechnologyTransportationVectorsVintageAll categoriesFootageFootage homeCurated collectionsShutterstock SelectShutterstock ElementsCategoriesAnimals / WildlifeBuildings / LandmarksBackgrounds / TexturesBusiness / FinanceEducationFood и DrinkHealth CareHolidaysObjectsIndustrialArtNaturePeopleReligionScienceTechnologySigns / SymbolsSports / RecreationTransportationEditorialAll categoriesEditorialEditorial главнаяРазвлеченияНовостиРоялтиСпортМузыкаМузыка домойПремиумBeatИнструментыShutterstock EditorМобильные приложенияПлагиныИзменение размера изображенияКонвертер файловСоздатель коллажейЦветовые схемыБлогГлавная страница блогаДизайнВидеоКонтроллерНовости
PremiumBeat blogEnterprisePric ing

Войти

Зарегистрироваться

Меню

Все изображения
  • Все изображения
  • Фото
  • Векторы
  • Иллюстрации
  • Редакционные
  • Видеоряд
  • Музыка

  • Поиск по изображению

Поиск изображений

СохранитьTryShare
  • Facebook
  • Twitter

  • Копировать ссылку
  • Электронная почта

Синонимы физических явлений, антонимы физических явлений

Однако тем, кто возлагал надежды на физические явления, было суждено разочароваться.Эти оксидные интерфейсы сочетают в себе ряд интересных физических явлений, таких как двумерная проводимость и сверхпроводимость. Два мира Канта можно рассматривать как связанные с тремя мирами Мартина Хайдеггера: 1) Mitwelt, или «с миром», – это мир вокруг состоящий из людей (то, что Хайдеггер впоследствии стал называть Dasein): это важная часть кантовского мира физических явлений – в этом смысле человека можно рассматривать как человеческое явление (терминология Тейяра де Шардена), окруженное человеческими явлениями; 2) Умвельт, окружающий мир, состоящий из всех объектов и событий, то, что мы бы назвали «средой»: это также большая часть кантовского мира физических явлений; 3) Selbstwelt, мир самости, или «самодостаточность»: это существенная часть кантовского мира физических явлений, который также является воротами в мир трансцендентального numina (последняя идея, согласно романтическим теоретикам).Комментаторы National Instruments считают, что то, что они называют «большими аналоговыми данными», т.е. данные, полученные в результате измерения физических явлений, превзойдет по размеру все другие формы больших данных. Студент PhD Матин Мохаза из CP3-Origins сказал, что новое Суть физики заключается в поиске неизвестных физических явлений, неизвестных с точки зрения современного восприятия Вселенной, и о том, что такие явления по своей природе очень трудно обнаружить. Ученый и его команда во Франции разработают новые модели для объяснения определенных физических явлений, таких как сверхпроводимость.Возможно, математические представления Эйнштейна работают адекватно для представления физических явлений на сверхсветовых скоростях, но не адекватно представляют физические процессы на сверхсветовых скоростях. Кроме того, они описывают физические явления, которые могут привести к деградации устройства во время работы схемы, и показывает, как вывести модели надежности для КМОП-технологии. Преимущества использования программ на VB заключаются в том, что они сокращают время и развивают интерактивный обучающий компонент на этапах изучения и оценки физических явлений.(Содержит 5 рисунков.) [Это исследование было поддержано Министерством образования Румынии и получило грант POSDRU / 6 / 1.5 / S / 24.] Этот том, название которого также может быть «Математические проблемы в металлургии», содержит большое количество математических задач и методы их решения, связанные с обработкой физических явлений, встречающихся в металлургии. Они сообщают о механических, электродинамических, оптических и других характеристиках самой активированной воды и различных физических явлениях, связанных с ее применением.Наука, лежащая в основе различных физических явлений и машин, исследуется и умело объясняется. Физика часто рассматривается как фундаментальная наука в том смысле, что все физические явления должны быть объяснены с помощью ее законов. По-видимому, Бедке считает, что все более убедительные доказательства предполагают, что такие интуиции и убеждения могут быть полностью объяснены в терминах естественных физических явлений. Эти приложения имитируют физические явления в тандеме, чтобы изобразить реальное поведение на виртуальном прототипе.

Что такое конечно-элементный анализ и как он работает?

Анализ методом конечных элементов или FEA – это моделирование физического явления с использованием численной математической техники, известной как метод конечных элементов или FEM. Этот процесс лежит в основе машиностроения, а также множества других дисциплин. Это также один из ключевых принципов, используемых при разработке программного обеспечения для моделирования. Инженеры могут использовать эти МКЭ для уменьшения количества физических прототипов и проводить виртуальные эксперименты для оптимизации своих конструкций.

Сложная математика необходима для понимания физических явлений, происходящих вокруг нас. К ним относятся такие вещи, как гидродинамика, распространение волн и термический анализ.

Анализ большинства этих явлений может быть выполнен с использованием уравнений в частных производных, но в сложных ситуациях, когда требуется несколько уравнений с высокой степенью переменных, анализ методом конечных элементов является ведущим математическим методом.

СВЯЗАННЫЙ: ИЗУЧИТЕ 15 СТЕПЕНИ ИНЖЕНЕРА: ЧТО НАИБОЛЕЕ ПОДХОДИТ ДЛЯ ВАС?

История анализа методом конечных элементов

Истоки FEA восходят к известному математику Эйлеру в 16 веке.Однако более жесткое определение «FEA» восходит к первому упоминанию метода еще в работах Шельбаха в 1851 году.

Анализ методом конечных элементов – это процесс, разработанный инженерами для решения проблем механики конструкций в гражданском строительстве. и в авиакосмической отрасли.

Источник: Craig Bonsignore / Flickr

Это практическое намерение методологии означало, что с самого начала эти методы были разработаны как нечто большее, чем просто математическая теория.К середине 1950-х годов методы FEA стали достаточно продвинутыми, чтобы инженеры могли начать использовать их в реальных ситуациях.

Математические принципы FEA также полезны в других областях, таких как вычислительная гидродинамика или CFD. Ключевое отличие здесь состоит в том, что метод FEA фокусируется на структурном анализе, а CFD – на гидродинамике.

Что влечет за собой выполнение FEA?

По сути, алгоритмы FEA интегрированы в программное обеспечение для моделирования, такое как Autodesk Inventor Nastran или набор программного обеспечения ANSYS.

Эти программы обычно интегрируются в программное обеспечение автоматизированного проектирования (САПР), что значительно упрощает инженерам переход от проектирования к выполнению сложного структурного анализа.

Для запуска моделирования методом МКЭ сначала создается сетка, содержащая миллионы мелких элементов, составляющих общую форму. Это способ преобразования трехмерного объекта в ряд математических точек, которые затем можно проанализировать. Плотность этой сетки может быть изменена в зависимости от сложности или простоты моделирования.

Вычисления выполняются для каждого отдельного элемента или точки сетки, а затем объединяются, чтобы получить общий окончательный результат для конструкции.

Поскольку вычисления выполняются на сетке, а не на всем физическом объекте, это означает, что между точками должна выполняться некоторая интерполяция. Эти приближения обычно находятся в пределах того, что необходимо. Точки сетки, в которых данные известны математически, называются узловыми точками и обычно группируются вокруг границ или других областей изменения в дизайне объекта.

FEA может также применяться для термического анализа материала или формы.

Например, если вы знаете температуру в одной точке объекта, как бы вы могли определить точную температуру в других точках объекта в зависимости от времени? Используя метод FEA, эти точки можно аппроксимировать с использованием различных режимов точности. Есть квадратное приближение, полиномиальное приближение и дискретное приближение. Каждый из этих методов становится более точным и сложным.

Если вас действительно интересует интенсивная математическая сторона FEA, прочтите этот пост от SimScale, в котором подробно рассказывается о деталях.

Вычислительная гидродинамика

Другой тип МКЭ, о котором мы упоминали ранее, – это вычислительная гидродинамика, которая требует изучения того, как она используется.

Суть CFD основана на уравнениях Навье-Стокса, которые исследуют однофазные потоки жидкости. В начале 1930-х годов ученые и инженеры уже использовали эти уравнения для решения жидкостных задач, но из-за нехватки вычислительной мощности уравнения были упрощены и уменьшены до двух измерений.

Хотя эти первые практические приложения гидродинамического анализа были примитивными, они уступили место тому, что вскоре стало важным активом моделирования.

На протяжении большей части первых лет решение задач CFD требовало упрощения уравнений до такой степени, что их можно было решать вручную. Ни в коем случае не средний инженер использовал эти вычисления; скорее, вплоть до конца 1950-х годов CFD оставалась в основном теоретической и исследовательской практикой. Как вы, наверное, догадались, в 1950-е годы вычислительные технологии улучшились, что позволило разрабатывать алгоритмы для практического CFD.

Первая функциональная компьютерная имитационная модель CFD была разработана группой из Национальной лаборатории Лос-Аламоса в 1957 году. Команда потратила большую часть 10 лет, работая над этими вычислительными методами, которые создали первые модели для большей части фундамента современного программы, охватывающие функцию завихренности в потоке до анализа частиц в ячейках.

К 1967 году компания Douglas Aircraft разработала работающий метод трехмерного анализа CFD. Анализ был довольно простым и был разработан для потока жидкости над профилями.Позже он стал известен как «панельный метод», поскольку анализируемая геометрия была значительно упрощена для облегчения вычислений.

С этого момента история CFD в значительной степени основана на инновациях в математике и компьютерном программировании.

Уравнения полного потенциала были включены в методологию Boeing в 1970-х годах. Уравнения Эйлера для трансзвуковых потоков были включены в коды в 1981 году. Хотя ранняя история CFD созрела с развитием, компании, участвовавшие в разработке этой технологии, также были заметны.Двумя ключевыми игроками в развитии методов вычислений для CFD были НАСА и Boeing.

К 1990-м годам, однако, технологии и вычислительные возможности стали настолько развитыми, что автопроизводители также увидели применение CFD в автомобильном дизайне. GM и Ford переняли эту технологию в 1995 году и начали производить автомобили, которые были намного более аэродинамичными по сравнению с квадратными фургонами прошлого.

История CFD пронизана громкими именами в отрасли, каждая из которых превратила анализ CFD в один из крупнейших доступных инструментов моделирования.

Для многих современных инженеров понимание сложной математики, лежащей в основе CFD, не является необходимым для проведения моделирования. Инструменты используются не только экспертами в области гидродинамики и математики, но теперь к ним также может получить доступ обычный инженер, имеющий практически любой уровень квалификации.

Не знаю, как вы, но иметь доступ к одному из самых мощных в математическом отношении программ для анализа моделирования в качестве обычного инженера – это довольно круто.

Вместе алгоритмы FEA и CFD, встроенные в современные инструменты САПР, дают инженерам доступ к тому, что по сути является математическими сверхспособностями.

Физические принципы голографии

Есть два физических явления как принципы голографии: интерференция и дифракция света волны.
Голограммы – это фотографии трехмерных изображений. на поверхности световых волн. Следовательно, чтобы чтобы сделать голограмму нужно сфотографировать свет волны. Это представляет собой некоторую дилемму.Как мы все знаем, может быть проблематично взять фотография быстро движущегося объекта. Если ты когда-либо изображение возвращалось размытым из фильма Лаборатория, ты слишком хорошо знаешь. Когда человек движется слишком быстро на фотографии их изображение размывается. Попробуйте представить себе проблемы, связанные с попыткой сфотографировать фотон.Для начала движется световая волна со скоростью света. Это около 300000 километров в секунду. Это больше, чем на полпути к Луне через секунду. Значительно быстрее, чем у кого-то машет рукой. Фактически, это так быстро, что само идея даже запечатлеть это на пленку кажется невозможной. Нам нужен способ остановить фотон, чтобы он мог сфотографироваться.И эта техника называется интерференция .

Вообрази себя стоя на небольшом мосту над неподвижной водой. Далее представим, что вы должны были бросьте камешек в пруд. Когда он ударяется о воду, он создает круговую волну. Эта волна излучается наружу по постоянно растущему круговому пути. Мы все это сделали. Теперь, если ты уронишь два камешка в воде, вы создадите две круговые волны, каждая из которых будет расти в размера и, в конце концов, пересекут путь другой волны, а затем продолжат ее индивидуальную расширяющийся путь.Там, где две круговые волны пересекаются, можно сказать, что они мешают друг другу. Образец, который они создают, называется интерференцией . узор . Это не так уж сложно представить. Вот что такое вмешательство. Две волны мешают друг другу на пересечении путей. Ни на одном не остается постоянного воздействия волна, как только он покинет область перекрытия. Каждая волна выглядит точно так же, как и раньше он пересек другой путь волн.Ну, может, он стал немного больше, но это об этом. Так что же такого особенного во вмешательстве в этом случае?

Здесь это. Когда волны пересекаются и пересекаются, узор Они делают стоячей волной . Это называется стоячей волной, потому что она стоит на месте. А поскольку он стоит на месте, его можно сфотографировать.Это решает проблему о том, как можно сфотографировать что-то движущееся скорость света. Итак, чтобы сфотографировать интерференционную картину мы должны использовать специальный источник света. Это лазер , который впервые был запущен в 1960 году.

Лазерный свет отличается резко от всех других источников света, искусственных или естественных, одним основным способом, который приводит к нескольким поразительным характеристикам.Лазерный свет может быть когерентным светом . В идеале это означает, что свет, излучаемый лазером, имеет одинаковую длину волны, и находится в фазе. Для некоторых из вас это могут быть новые термины, поэтому давайте проведем аналогию, может уточнить термин согласованность .

Но мы не отвечаем на больший вопрос. Почему световая волна стоит на месте? Чтобы понять это, давайте представим фотон.Если посмотреть на него сбоку, он выглядит как синусоида. Теперь попробуйте представить себе реку русло реки лежит на волнистой скале, похожей на синусоидальную волну. Эта река будет полно порогов. Фактически, это было бы здорово для рафтинга. Хотя вода в реке бешено течет вниз по течению, узор воды над порогами стационарный. Вы можете думать об этом как о стоячей волне. Волновая энергия течет через эту стоячую волну, не изменяя ее, и наоборот.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *